NEUROPATHOLOGY BRAIN CUTTING MANUAL
LAST UPDATED ON 6/24/2014

Neuropathology Attendings:

- Dr. Andrew Lieberman (Chief of the Division)
- Dr. Paul McKeever
- Dr. Sriram Venneti
- Dr. Sandra Camelo-Piragua

Neuropathology Administrative Assistant: 734-936-1889
1. Brain Processing protocol
BRAIN PROCESSING PROTOCOL

Autopsy neuropathology will have two major objectives: 1) provide a high quality neuropathologic diagnosis in a timely manner and 2) train house officers in neuropathology. This protocol further clarifies how examinations should proceed.

I. CLASSIFICATION OF BRAINS:

Brains are classified at the time of autopsy by the house officer and autopsy attending staff, with consultation by the neuropathologist on call for surgical neuropathology if needed.

A. Normal brains are those brains that have a negative neurologic history, absent or negative radiographs, and are grossly normal.

B. Abnormal brains are those brains from patients with pathology or symptoms directly related to the brain. Examples would include patients with any of these: significant neurologic symptoms, abnormal CT or MRI, patients with possible brain metastases or those brains that are grossly abnormal.

II. WORKFLOW:

After a decision has been made regarding the classification of the brain, the examination continues as described below for each type. All brains and spinal cords are to be removed by the house officer, with assistance by the dieners. Neuropathology staff do not need to be in attendance for brain harvesting unless the house officer requests their presence.

A. Normal brains: These brains are processed completely by the house officer and general autopsy attending staff.

1. Harvesting and cutting: The brains may be cut fresh, or fixed and cut alone at a later date. The house officer sections the brain and takes sections for routine H&E staining as directed by the attending pathologist. House officers are encouraged to cut as many as possible of these brains fresh, since this will (1) increase their familiarity with fresh neuroanatomy and (2) decrease the amount of time needed to process the entire case.

2. Slides: The sections are submitted by the house officer for routine H&E processing. It is recommended that the CNS sections are fixed independently and in good amount of formalin for proper fixation prior processing. Slides are reviewed by the house officer with the regular attending autopsy staff. If questions arise, the attending neuropathologist on call for surgical neuropathology can be consulted. It should be stressed that house officers are expected to quickly learn how to process and sample a normal brain by themselves.

B. Abnormal brains: Consultation with the neuropathologist on call for surgical neuropathology may be done concerning the initial processing of these brains.
Harvesting: In most cases, the brain, pituitary gland and in some occasions spinal cord will be removed and fixed in formalin.

a. **Clinical History:** From the patient’s chart, the house officer should know whether there is brain abnormality. These brains will be cut at the Brain Cutting Conference by the neuropathologist on call for surgical neuropathology.

b. **Scheduling Brain Cutting:** A maximum of 3 cases per session will be scheduled. Diana French, Morgue Supervisor contacts the administrative assistant by email. She will let the administrative assistant know if there are brains to be cut or not. If there are brains that are fixed and ready to cut on the upcoming Tuesday she will let the administrative assistant know. If there is a pathology resident doing a neuropathology rotation he/she will be the one to cut the brain. If there are pathology resident’s assigned to the morgue and no one rotating in neuropathology they will cut the brains. On occasion, there a medical examiner cases which Diana will let the administrative assistant know and which ME will do the cutting.

III. BRAIN CUTTING CONFERENCE:

House officers will cut the abnormal brains of their cases with the help of the neuropathologist on call for surgical neuropathology at the weekly brain cutting conference in the morgue, held each Tuesday at 12 noon. Maximal involvement of each house officer as described below is essential to their training. The house officer will present the patient’s history and systemic autopsy findings in brief 1-5 minute verbal summary, and record the macroscopic observations. The neuropathology attending will lead discussion of the neuropathology.

The house officer responsible for the brain should schedule this brain to be cut when he or she can attend the brain cutting. If an extraordinary circumstance curtails attendance, this house officer should arrange backup by the house officer on UH autopsy duty or another house officer who will be available for that brain cutting.

The diener will wash the scheduled brains thoroughly, set up the appropriate instruments for cutting the brains, forward the morgue phone to an answering machine, make every attempt to curtail use of the bone saw during Tuesday Brain Cutting Conference, and clean up after brain cutting. Liz will inform the diener of the brains to be cut on the Friday before brain cutting.

A. Tissue Blocking:

Sections will be taken the same day of brain cutting conference by the house officer, under the guidance of the attending neuropathologist (who may also check the house officer’s macroscopic description). The house officer should record laterality (left or right) and region of cerebrum (frontal, parietal, thalamus, etc.) in the block description. The sections will be given to a histologist after brain cutting and fixing in cassettes. A decision will be made at the time of selecting sections which stains should be performed. Section and stain selection, and description are important components of the house officer’s training, and house
officers should be actively involved in the macroscopic description and selection of the neuroanatomic areas for study and the stains that will be used for this examination. For example, brains with metastatic or ischemic disease are best viewed with H&E stains, while Luxol fast blue is preferred for demyelinating disease, and Bielschowsky silver and ubiquitin for dementia. Microscopic sections of abnormal brains are reviewed with the neuropathologist who was present at gross brain cutting.

The House Officer prepares the gross report incorporated into the autopsy report under: Additional dissection: Neuropathology exam notation.

B. Slides:
Slides stained with H&E and the special stain slides will be returned directly to the house officer's mailbox. If a brain is cut at brain cutting conference with a neuropathologist, then it is expected that the house officer will review and signout the CNS autopsy slides with that neuropathologist.

C. Completion of the UMMC hospital case:
The house officer writes the microscopic description. Letters identifying specific blocks are included in parentheses. For example "Focal acute infarct in left superior frontal gyrus (block E)." If the microscopic slides were reviewed with a neuropathologist, put their name as a Consulting Pathologist on the first page of the final autopsy report. If a neuropathologist is consulted it is expected that the house officer shows final report to the attending to assure accuracy of diagnosis and description

FLOW CHART FOR HANDLING AUTOPSY BRAINS

<table>
<thead>
<tr>
<th>Consultation prior to harvesting (day1)</th>
<th>A. Normal</th>
<th>B. Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attending autopsy staff Pathologist; neuropathologist, if needed</td>
<td></td>
<td>Neuropathologist on call for surgical neuropathology, if needed</td>
</tr>
<tr>
<td>Harvesting (day 1 if fresh or day 15 if fixed)</td>
<td>House officer (HO) cuts fresh, or fix</td>
<td>Fix in formalin (freeze 1 cc of frontal lobe if infection, toxic, metabolic, hereditary, or degenerative disease is suspected)</td>
</tr>
<tr>
<td>Sections (day 1 if fresh or day 15 if fixed)</td>
<td>HO takes</td>
<td>HO takes at brain cutting, with supervision by neuropathologist</td>
</tr>
<tr>
<td>Special Stains</td>
<td>Ordered by HO, if needed</td>
<td>Ordered by HO in consultation with neuropathologist</td>
</tr>
</tbody>
</table>
| Processing (within 3 days after sectioning the brain) | Histology
CNS cassettes should fix in sufficient formalin for at least 2 days before processing.
CNS blocks should fix separate and in sufficient formalin for proper processing. | Histology
CNS cassettes should fix in sufficient formalin for at least 2 days before processing.
CNS blocks should fix separate and in sufficient formalin for proper processing. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slides returned</td>
<td>To House officer</td>
<td>To House Officer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review Slides (Within one week of sectioning the brain)</td>
<td>Autopsy attending staff pathologist</td>
<td>Neuropathologist who cut the brain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report (Within two weeks of sectioning the brain)</td>
<td>Autopsy attending staff pathologist or if consultation was requested to a neuropathologist he/she should review the report</td>
<td>Neuropathologist who review the slides</td>
</tr>
</tbody>
</table>
2. Suggested Sections for brain cutting
SUGGESTED SECTIONS FOR BRAIN CUTTING

1. Include a section of any abnormal brain regions identified at brain cutting.

2. In hypoperfusion/ischemic events, include appropriate watershed areas
 (2-4 cassettes)

3. If history of alcohol abuse, include a section of superior and inferior cerebellar vermis, mammillary bodies and periaqueductal grey matter.

4. Brains without gross pathology, and additional sections for the above mentioned cases:
 A. Cerebral cortex (frontal, temporal occipital OR parietal)
 B. Basal Ganglia
 C. Hippocampus at the level of the Lateral Geniculate. (LGN)
 LGN: “Napoleon’s hat”
 D. A section of the brain stem (Midbrain, pons and/or medulla).
3. Brain Gross Description Template
The brain weighs ______ g fixed (normal range: 1200-1400 g). Both the external and internal surfaces of the dural leaflets are smooth and free from nodules. The superior sagittal sinus is patent. There ______ evidence of cingulate, uncal, or cerebellar tonsilar herniation. The leptomeninges are _______ (thin, translucent, and free from exudates or cloudy). Examination of the arteries of the circle of Willis and their major branches reveals they are patent with ___________ atherosclerosis. Aneurisms are ________ seen. The superficial veins of the brain and cranial nerves are unremarkable. There is ______ atrophy primarily affecting the ______________ lobes. After coronal sectioning, the cerebral hemisphere reveals a cortex of ______ mm at the level of the genu of the corpus callosum. The lateral ventricle is _________ dilated. There is no deviation of the septum pellucidum. The centrum ovale is free from hemorrhage and tumor mass. The central nuclei of the brain including caudate, lentiform, thalami, lateral geniculate bodies and subthalamic nuclei all are unremarkable. The hippocampus and amygdala are ___________. The substantia nigra and locus ceruleus are _______________. The remainder of the midbrain, pons, medulla, cerebellar hemispheres, vermis and cerebellar nuclei are _________. The spinal cord is __________.
4. CNS Watershed Areas
CNS WATERSHED AREAS (SICP sections)

Key:
- Anterior cerebral artery
- Middle cerebral artery
- Anterior choroidal artery
- Anterior communicating artery
- Posterior cerebral a. (PCA)
- Posterior choroidal artery
- Thalamic perforating artery

1. Superior and Middle Frontal gyrus at the level of CAP
2. Thalamus, Red nucleus, SN and LGN
3. Meddial Parieto-Occipital cortex
4. Cerebellar hemispheres
5. Cerebellar vermis
6. Pons
7. Medulla
Infarction in the distribution of Anterior Spinal Art:
- Anterior grey matter
- Anterior tracts
- T4 is the most vulnerable watershed area
5. Fetal and infant brain weights ranges
Table 2. Data on Brain Weights, Body Heights, and Body Weights in 2,663 Males Divided into 23 Age Groups between Birth and 86+ Years

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Age (yr)</th>
<th>No. of Brains</th>
<th>Mean Brain Weight (kg)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
<th>Mean Body Height (m)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
<th>Mean Body Weight (kg)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15</td>
<td>0-10 d</td>
<td>241</td>
<td>0.38 ± 0.09</td>
<td>0.63</td>
<td>0.08</td>
<td>0.00</td>
<td>0.50 ± 0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.95 ± 0.47</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30-35</td>
<td>1-10</td>
<td>200</td>
<td>0.34 ± 0.06</td>
<td>0.59</td>
<td>0.09</td>
<td>0.02</td>
<td>0.54 ± 0.05</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>5.86 ± 0.73</td>
<td>0.32</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>35-45</td>
<td>11-20</td>
<td>173</td>
<td>0.31 ± 0.06</td>
<td>0.52</td>
<td>0.08</td>
<td>0.00</td>
<td>0.54 ± 0.06</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>9.47 ± 0.73</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>45-55</td>
<td>21-30</td>
<td>125</td>
<td>0.29 ± 0.08</td>
<td>0.46</td>
<td>0.07</td>
<td>0.01</td>
<td>0.46 ± 0.10</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>12.20 ± 0.73</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55-65</td>
<td>31-40</td>
<td>100</td>
<td>0.25 ± 0.07</td>
<td>0.39</td>
<td>0.06</td>
<td>0.01</td>
<td>0.41 ± 0.09</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>15.55 ± 0.54</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>65-75</td>
<td>41-50</td>
<td>78</td>
<td>0.20 ± 0.06</td>
<td>0.29</td>
<td>0.05</td>
<td>0.01</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>19.16 ± 0.73</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>75-85</td>
<td>50-60</td>
<td>53</td>
<td>0.15 ± 0.05</td>
<td>0.25</td>
<td>0.04</td>
<td>0.01</td>
<td>0.50 ± 0.10</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>22.94 ± 1.15</td>
<td>0.61</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>85-95</td>
<td>60-70</td>
<td>33</td>
<td>0.10 ± 0.03</td>
<td>0.20</td>
<td>0.03</td>
<td>0.01</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>26.35 ± 1.56</td>
<td>0.84</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>95-105</td>
<td>70-80</td>
<td>25</td>
<td>0.05 ± 0.02</td>
<td>0.15</td>
<td>0.02</td>
<td>0.00</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>30.34 ± 2.02</td>
<td>0.98</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*Percentage change from mean of previous age group.
NB = term birth with body weight between 2.1 and 3.3 kg.

Table 3. Data on Brain Weights, Body Heights, and Body Weights in 1,848 Females Divided into 23 Age Groups between Birth and 86+ Years

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Age (yr)</th>
<th>No. of Brains</th>
<th>Mean Brain Weight (kg)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
<th>Mean Body Height (m)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
<th>Mean Body Weight (kg)</th>
<th>SD</th>
<th>SEM</th>
<th>% Change*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15</td>
<td>0-10 d</td>
<td>165</td>
<td>0.36 ± 0.08</td>
<td>0.57</td>
<td>0.08</td>
<td>0.00</td>
<td>0.47 ± 0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.58 ± 0.47</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30-35</td>
<td>1-10</td>
<td>140</td>
<td>0.32 ± 0.06</td>
<td>0.52</td>
<td>0.07</td>
<td>0.00</td>
<td>0.52 ± 0.07</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>5.28 ± 0.64</td>
<td>0.32</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>35-45</td>
<td>11-20</td>
<td>115</td>
<td>0.29 ± 0.06</td>
<td>0.46</td>
<td>0.06</td>
<td>0.00</td>
<td>0.50 ± 0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>7.76 ± 0.69</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>45-55</td>
<td>21-30</td>
<td>85</td>
<td>0.25 ± 0.05</td>
<td>0.39</td>
<td>0.05</td>
<td>0.00</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>10.34 ± 0.64</td>
<td>0.43</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55-65</td>
<td>31-40</td>
<td>65</td>
<td>0.21 ± 0.05</td>
<td>0.30</td>
<td>0.04</td>
<td>0.00</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>13.16 ± 0.64</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>65-75</td>
<td>41-50</td>
<td>45</td>
<td>0.17 ± 0.04</td>
<td>0.25</td>
<td>0.03</td>
<td>0.00</td>
<td>0.50 ± 0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>16.01 ± 0.64</td>
<td>0.61</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*Percentage change from mean of previous age group.
NB = term birth with body weight between 2.1 and 3.3 kg.
<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Fresh brain weight (g)</th>
<th>Fixed brain weight (g)</th>
<th>Infratentorial weight (g)</th>
<th>% Infratentorial/total brain weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 175)</td>
<td>(n = 298)</td>
<td>(n = 114)</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>0.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10-11</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12-13</td>
<td>5.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14-15</td>
<td>15.45 ± 1.20</td>
<td>14.40 ± 3.34</td>
<td>0.76 ± 0.14</td>
<td>5.91 ± 0.62</td>
</tr>
<tr>
<td>16-17</td>
<td>21.17 ± 1.05</td>
<td>21.49 ± 5.34</td>
<td>1.21 ± 0.19</td>
<td>5.37 ± 0.78</td>
</tr>
<tr>
<td>18-19</td>
<td>37.33 ± 8.17</td>
<td>38.75 ± 9.52</td>
<td>2.19 ± 0.7</td>
<td>4.88 ± 0.50</td>
</tr>
<tr>
<td>20-21</td>
<td>52.19 ± 7.23</td>
<td>55.38 ± 10.18</td>
<td>2.81 ± 0.42</td>
<td>4.98 ± 0.49</td>
</tr>
<tr>
<td>22-23</td>
<td>75.01 ± 17.76</td>
<td>78.15 ± 14.37</td>
<td>3.71 ± 0.74</td>
<td>4.54 ± 4.41</td>
</tr>
<tr>
<td>24-25</td>
<td>101.53 ± 18.75</td>
<td>111.97 ± 17.30</td>
<td>5.23 ± 0.70</td>
<td>4.61 ± 0.29</td>
</tr>
<tr>
<td>26-27</td>
<td>130.62 ± 17.38</td>
<td>146.21 ± 21.69</td>
<td>6.95 ± 1.41</td>
<td>4.52 ± 0.32</td>
</tr>
<tr>
<td>28-29</td>
<td>169.22 ± 19.11</td>
<td>184.62 ± 26.40</td>
<td>7.63 ± 0.79</td>
<td>4.76 ± 0.46</td>
</tr>
<tr>
<td>30-31</td>
<td>203.02 ± 25.99</td>
<td>228.54 ± 29.84</td>
<td>12.25 ± 2.02</td>
<td>5.24 ± 0.35</td>
</tr>
<tr>
<td>32-33</td>
<td>234.88 ± 28.24</td>
<td>266.00 ± 32.78</td>
<td>14.00</td>
<td>5.18</td>
</tr>
<tr>
<td>34-35</td>
<td>280.3 ± 28.19</td>
<td>309.32 ± 47.04</td>
<td>15.75 ± 3.18</td>
<td>5.58 ± 0.41</td>
</tr>
<tr>
<td>36-37</td>
<td>325.83 ± 40.75</td>
<td>365.00 ± 50.27</td>
<td>21.43 ± 3.36</td>
<td>6.07 ± 0.86</td>
</tr>
<tr>
<td>38-39</td>
<td>391.69 ± 41.39</td>
<td>433.30 ± 56.89</td>
<td>26.93 ± 4.70</td>
<td>6.27 ± 0.56</td>
</tr>
<tr>
<td>40-41</td>
<td>409.63 ± 37.55</td>
<td>455.27 ± 53.66</td>
<td>29.05 ± 4.04</td>
<td>6.68 ± 0.65</td>
</tr>
</tbody>
</table>

Data given as mean ± standard deviation (SD), with number of cases in parentheses.

Data from Guilhard-Costa and Larroche (1996).239

cortex occurs at approximately 16 weeks of gestation.388 This process is dependent on proper migration and function of the subplate neuron population, which directs migrating cortical plate neurons and targeting of their axonal projections (Figure 4.6).198,389 With lamination, neurite outgrowth progresses, with the elaboration of dendritic and axonal ramifications. These major neuronal changes are demonstrated in the developing visual cortex (Figure 4.7, page 252). Trisomy 21 exemplifies organizational disorders that result in defective lamination. Golden and Hyman showed that the lamination is abnormal in the superior temporal neocortex in trisomy 21 (Figure 4.8, page 253).390 This altered cortical maturation may reflect an abnormality in axonal and dendritic arborization as the substrate for the mental retardation of individuals with this chromosomal abnormality. Lamina-specific antibodies are now available,392 providing the means to study temporal and spatial patterns of laminar development in the human cerebral cortex.

SYNAPTOGENESIS AND AXONAL ELONGATION

During development, synapses are formed over a protracted interval, beginning in the embryo and continuing into postnatal life.393 Synaptogenesis is coupled closely to neuronal
Table 4.3 Percentiles of brain weights in relation to gestational age

<table>
<thead>
<tr>
<th>Gestational age (weeks)</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-27</td>
<td>94</td>
<td>102</td>
<td>110</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>29-32</td>
<td>125</td>
<td>135</td>
<td>147</td>
<td>160</td>
<td>170</td>
</tr>
<tr>
<td>30-34</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>203</td>
<td>217</td>
</tr>
<tr>
<td>32-35</td>
<td>190</td>
<td>201</td>
<td>210</td>
<td>234</td>
<td>252</td>
</tr>
<tr>
<td>34-38</td>
<td>226</td>
<td>240</td>
<td>251</td>
<td>280</td>
<td>287</td>
</tr>
<tr>
<td>36-38</td>
<td>280</td>
<td>295</td>
<td>311</td>
<td>328</td>
<td>348</td>
</tr>
<tr>
<td>38-40</td>
<td>317</td>
<td>332</td>
<td>356</td>
<td>328</td>
<td>346</td>
</tr>
<tr>
<td>40-41</td>
<td>370</td>
<td>400</td>
<td>420</td>
<td>440</td>
<td>463</td>
</tr>
</tbody>
</table>

Adapted from Larroche (1977).

Table 4.4 Brain weight in infants in relation to age and length

<table>
<thead>
<tr>
<th>Age</th>
<th>Body length (cm)</th>
<th>Mean (g)</th>
<th>SD (g)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>N/A</td>
<td>325</td>
<td>158</td>
<td>13</td>
</tr>
<tr>
<td>1 week</td>
<td>N/A</td>
<td>370</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>2 weeks</td>
<td>N/A</td>
<td>456</td>
<td>54</td>
<td>7</td>
</tr>
<tr>
<td>3 weeks</td>
<td>N/A</td>
<td>430</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>1 month</td>
<td>N/A</td>
<td>482</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>2 months</td>
<td>N/A</td>
<td>608</td>
<td>248</td>
<td>22</td>
</tr>
<tr>
<td>3 months</td>
<td>N/A</td>
<td>672</td>
<td>274</td>
<td>15</td>
</tr>
<tr>
<td>4 months</td>
<td>N/A</td>
<td>734</td>
<td>240</td>
<td>13</td>
</tr>
<tr>
<td>5 months</td>
<td>N/A</td>
<td>867</td>
<td>290</td>
<td>9</td>
</tr>
<tr>
<td>6 months</td>
<td>N/A</td>
<td>839</td>
<td>280</td>
<td>8</td>
</tr>
<tr>
<td>7 months</td>
<td>N/A</td>
<td>880</td>
<td>86</td>
<td>5</td>
</tr>
<tr>
<td>8 months</td>
<td>N/A</td>
<td>845</td>
<td>280</td>
<td>4</td>
</tr>
<tr>
<td>9 months</td>
<td>N/A</td>
<td>905</td>
<td>228</td>
<td>7</td>
</tr>
<tr>
<td>10 months</td>
<td>N/A</td>
<td>988</td>
<td>280</td>
<td>10</td>
</tr>
<tr>
<td>11 months</td>
<td>N/A</td>
<td>983</td>
<td>186</td>
<td>6</td>
</tr>
<tr>
<td>12 months</td>
<td>N/A</td>
<td>980</td>
<td>156</td>
<td>3</td>
</tr>
<tr>
<td>14 months</td>
<td>74</td>
<td>944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 months</td>
<td>77</td>
<td>1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 months</td>
<td>78</td>
<td>1042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 months</td>
<td>79</td>
<td>1050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 months</td>
<td>82</td>
<td>1059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>84</td>
<td>1064</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N/A, not applicable; SD, standard deviation.

Data from newborn to 12 months adapted from Thompson and Cohle (2004).

Data from 14 to 24 months adapted from Sanderman and Boerner (1948).

differentiation and the laying down of neuronal circuitry: following neuronal differentiation and the extension of axonal and dendritic processes, several of the genes encoding synaptic proteins begin to be expressed. Correct neuronal connections are specified, via the mediation of cell-surface adhesion molecules, as initial, often transient, synapses are formed between growing neurites. Finally, some synapses are selectively eliminated as remodelling of cortical connections progresses. This elimination occurs via several mechanisms, including competition for trophic substances and increased electrical activity, and is mediated in part via ubiquitination pathways. The elimination of synapses in infancy has been reported in the human visual cortex. Multiple disorders of dendrites and/or spines, e.g. abnormal density and/or shape in Down syndrome (Figure 4.9, page 254), are recognized in the perinatal period and beyond (Table 4.5, page 255). For example, in Rett syndrome there is selective abnormality of dendrites in the motor, frontal and limbic cortices (Figure 4.10, page 256). Because the quantitative differences are non-progressive in Rett’s syndrome, an arrest of dendritic development rather than degeneration has been suggested.

Historically, synapses have been examined with Golgi impregnation techniques that define spines and axonal boutons, and with electron microscopy, using sections stained with ethanolic phosphotungstic acid for visualizing synaptic junctions. Both of these techniques depend upon short post-mortem intervals. The discovery of synapse-associated molecules provides an alternative means for studying human synapses, allowing for immunohistochemical labelling in tissue sections with more realistic post-mortem intervals. The molecules include growth-associated protein 43 (GAP-43), synaptophysin, synaptotagmin, synaptobrevin, synaptic vesicle protein 2A and synaptosome-associated protein of 25 000 daltons (SNAP-25) and have varying roles, including molecular assembly of the synaptic junction and the delivery of pre- and postsynaptic components. For example, GAP-43 is a synapse-related molecule that is a neuronal membrane phosphoprotein with possible linkage to the submembrane actin cytoskeleton. Because its expression occurs maximally during periods of growth and change, markers for GAP-43 protein or mRNA are highly informative regarding the topographical patterns of synaptogenesis in vivo. During development, the highest levels of GAP-43 appear along the entire length of the axon as it is elongating, and then in preterminal branches and their growth cones in the period in which end arbors are being elaborated. After the establishment of stable synapses, most neurons cease expressing GAP-43 at high levels. In certain regions, however, high GAP-43 levels persist into adulthood, e.g. in the limbic and associative regions of the forebrain. These presynaptic terminals in which GAP-43 levels remain high may represent sites that can undergo functional and possibly even structural changes (plasticity) in response to physiological activity throughout life. GAP-43 immunostaining delineates the sequences of synaptogenesis and fibre tract elongation in the human telencephalon (Figure 4.11, page 257) and brain stem. In the parietal white matter, GAP-43 expression peaks between 30 post-conceptional weeks and term (37-40 post-conceptional weeks) and corresponds to the onset of expression of phosphorylated neurofilament, a crucial cytoskeletal protein in the axon. This critical period for axonal development in the human cerebral white matter coincides with the window of vulnerability to periventricular leukomalacia (PVL), the major underlying substrate of cognitive and
6. ADRC brain cutting
6.1 Blocking List for Neurodegenerative Diseases (ADRC)
Blocking list for Neurodegenerative diseases (modified 6/24/H by SCP)

Resident: []

NP Attending: []

Date Sections taken: []

<table>
<thead>
<tr>
<th>Sections</th>
<th>R / L</th>
<th>For Every Dementia Case (AD and FTD-Picks)</th>
<th>For other FTD</th>
<th>For PSP or CBD</th>
<th>If Synuclein Positive in either 5 or 12</th>
<th>MSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Middle Frontal Gyrus</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau, GFAP</td>
<td>Tau, Ubiquitin, TDP-43</td>
<td>Synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Superior and Middle Temporal Gyrus</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td>Tau, Ubiquitin, TDP-43</td>
<td>Tau</td>
<td>Synuclein</td>
<td></td>
</tr>
<tr>
<td>3 Inferior Parietal Cortex</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td></td>
<td></td>
<td>Synuclein</td>
<td></td>
</tr>
<tr>
<td>4 Primary Visual Cortex</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td></td>
<td></td>
<td>Synuclein</td>
<td></td>
</tr>
<tr>
<td>5 Anterior cingulate with corpus callosum</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau, Synuclein</td>
<td>Tau</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Amygdala</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td>Tau</td>
<td>Synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Nucleus basalis at the level of anterior commissure, Include Basal Ganglia GP and Putamen</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td>Tau</td>
<td>Synuclein</td>
<td>Tau, Synuclein</td>
<td></td>
</tr>
<tr>
<td>8 Hippocampus at the level of the lateral geniculate</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td>Tau, Ubiquitin, TDP-43</td>
<td>Tau</td>
<td>Synuclein</td>
<td></td>
</tr>
<tr>
<td>9 Subthalamic nucleiuses and Thalamus</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau</td>
<td>Tau</td>
<td>Tau, Synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Superior cerebellum with full dentate nuclei</td>
<td>R</td>
<td>H&E, Beta-amyloid</td>
<td>Tau</td>
<td>Tau, Synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Midbrain at the level of the red nucleus</td>
<td>R</td>
<td>H&E, Synuclein, Beta-amyloid</td>
<td>Tau</td>
<td>X</td>
<td>Tau, Synuclein</td>
<td></td>
</tr>
<tr>
<td>12 Pons one section with basis pontis and 1 or 2 additional levels of locus ceruleus</td>
<td>R</td>
<td>H&E, Beta-amyloid</td>
<td>Tau</td>
<td>Synuclein</td>
<td>Tau, Synuclein</td>
<td></td>
</tr>
<tr>
<td>13 Medulla at the level of inferior olivary nucleus</td>
<td>R</td>
<td>H&E, Beta-amyloid</td>
<td>Tau</td>
<td>Synuclein</td>
<td>Tau, Synuclein</td>
<td></td>
</tr>
<tr>
<td>14 Cervical Spinal cord</td>
<td>R</td>
<td>Luxol fast blue and H&E (one single stain)</td>
<td>Tau, Synuclein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Motor Sensory Cortex</td>
<td>R</td>
<td>H&E, Biel, Beta-amyloid, Tau, GFAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Cerebellar vermis</td>
<td>R</td>
<td>H&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14-16 Optional
6.2 Blocking Diagrams for Neurodegenerative (ADRC) section 6.1
BLOCKING DIAGRAMS FOR NEURODEGENERATIVE DISEASES

Coronal sections of Cerebrum

#1

#5

#6

#7
Coronal sections of Cerebrum
Cerebellum Transverse Sections

#10

MIDBRAIN

#11

PONS

#12

MEDULLA

#13
6.3 Alzheimer’s Disease ABC Staging

(See also References)
31.27 CERAD plaque densities. When used in the NIA-AA diagnostic criteria for AD, the scores are: none = 0; sparse = 1; moderate = 2; frequent = 3.

Table 31.8 Age-related plaque score table

<table>
<thead>
<tr>
<th>Age of patient at death (years)</th>
<th>None</th>
<th>Sparse</th>
<th>Moderate</th>
<th>Frequent</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>0</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>50–75</td>
<td>0</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>>75</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

The age-related plaque score corresponds to the following assessment: 0, No histologic evidence of Alzheimer’s disease; A, Histologic findings are uncertain evidence of Alzheimer’s disease; B, Histologic findings suggest the diagnosis of Alzheimer’s disease; C, Histologic findings indicate the diagnosis of Alzheimer’s disease.

Table 31.9 CERAD diagnostic groups

Normal (with respect to Alzheimer’s disease or other dementing processes) if:

Either

No histologic evidence of Alzheimer’s disease (0 score), and no clinical history of dementia, and absence of other neuropathologic lesions likely to cause dementia

Or

A age-related plaque score and no clinical history of dementia

CERAD NP definite Alzheimer’s disease

C age-related plaque score, and clinical history of dementia, and presence or absence of other neuropathologic lesions likely to cause dementia

CERAD NP probable Alzheimer’s disease

B age-related plaque score, and clinical history of dementia, and presence or absence of other neuropathologic lesions likely to cause dementia

CERAD NP possible Alzheimer’s disease if:

Either

A age-related plaque score, and clinical history of dementia, and presence or absence of other neuropathologic lesions likely to cause dementia

Or

B or C age-related plaque score and absence of clinical manifestations of dementia

Table 31.10 ABC scoring scheme for AD neuropathologic change

<table>
<thead>
<tr>
<th>A</th>
<th>Thal plaque phase</th>
<th>B</th>
<th>Braak NFT stage</th>
<th>C</th>
<th>CERAD plaque score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>0-</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1 or 2</td>
<td>1</td>
<td>I or II</td>
<td>1</td>
<td>Sparse</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>III or IV</td>
<td>2</td>
<td>Moderate</td>
</tr>
<tr>
<td>3</td>
<td>4 or 5</td>
<td>3</td>
<td>V or VI</td>
<td>3</td>
<td>Frequent</td>
</tr>
</tbody>
</table>

Table 31.11 NIA-AA ABC scoring for Alzheimer neuropathologic change

<table>
<thead>
<tr>
<th>AD neuropathologic change</th>
<th>A Score</th>
<th>C Score</th>
<th>0 or 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>1</td>
<td>0 or 1</td>
<td>Low</td>
<td>Low</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>2</td>
<td>2 or 3</td>
<td>Low</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3</td>
<td>Any C score</td>
<td>Low</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>0 or 1</td>
<td>Low</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3</td>
<td>2 or 3</td>
<td>Low</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

The probability that AD neuropathologic change accounted for the clinical dementia is assigned by applying an ABC score. AD/amyloid plaques (A); NFT stage (B); and neuritic plaque score (C). Intermediate or ‘High’ scores are considered to indicate that AD neuropathologic change was a sufficient explanation for dementia.

B. BRAAK STAGING

(Ellison & Love 3rd Edition)
6.4 Lewy Body Disease Staging

(Ellison & Love, 3rd Ed.)
0 = none (not illustrated)
1 = mild (sparse LBs or LNs),
2 = moderate (more than 1 LB in a low-power field, and sparse LNs),
3 = severe (four or more LBs and scattered LNs in a low power field),
4 = very severe (numerous LBs and numerous LNs)

The Lewy body scores for individual areas are summed and the final score is used to subclassify Lewy body disease into brain stem, limbic, or neocortical types.

<table>
<thead>
<tr>
<th>Lewy body type</th>
<th>Brainstem regions</th>
<th>Basal forebrain/limbic regions</th>
<th>Neocortical regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IX-X</td>
<td>LC</td>
<td>SN</td>
</tr>
<tr>
<td>Brainstem predominant</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Limbic (transitional)</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Diffuse neocortical</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
</tbody>
</table>

IX = 9th cranial nerve nucleus, X = 10th cranial nerve nucleus
LC = locus ceruleus, SN = substantia nigra
nbM = nucleus basalis of Meynert

Neuropathologic diagnosis of DLB

<table>
<thead>
<tr>
<th>Classification of Lewy Body Disease</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No Lewy bodies or related changes seen with α-synuclein staining</td>
</tr>
<tr>
<td>Brainstem predominant</td>
<td>Lewy bodies in midbrain, pons or medulla</td>
</tr>
<tr>
<td>Limbic (transitional)</td>
<td>Lewy bodies in cingulated or entorhinal cortices, almost always associated with brain stem involvement</td>
</tr>
<tr>
<td>Neocortical (diffuse)</td>
<td>Lewy bodies in frontal, temporal or parietal cortices usually associated with brain stem and limbic involvement</td>
</tr>
<tr>
<td>Amygdala predominant</td>
<td>Lewy bodies in amygdala usually in the absence of involvement of the above regions</td>
</tr>
</tbody>
</table>

Reporting

A pathological diagnosis should be specified, irrespective of clinical history according to the classification above. It is recommended that the presence of neocortical LBD can be regarded as a sufficient explanation for cognitive decline. Amygdala-predominant LBD is usually seen in the context of advanced stage AD changes. (Modified from National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's Dement 2012; 8(1):1-13)

31.37 **Diagnosis of Lewy body disease.** A scheme for the pathologic categorization of Lewy Body Disease into the brain stem predominant, limbic, neocortical and amygdala predominant subtypes. Reporting: (1) A pathologic diagnosis should be specified, irrespective of clinical history according to the classification above. (2) It is recommended that the presence of neocortical LBD can be regarded as a sufficient explanation for cognitive decline. (3) Amygdala-predominant LBD is usually seen in the context of advanced stage AD changes. (Modified from National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's Dement 2012; 8(1):1-13)
Consensus criteria for pathologic assessment of Lewy Body Disease

Pathologic criteria for the evaluation of Lewy body disease have been proposed. Cases are divided into four main subtypes according to a distribution of Lewy bodies in brain stem, limbic, neocortical and amygdala regions.

Histologic sampling and staining

The following areas should be sampled:

Neocortical regions

(i) Frontal BA8/9
The middle frontal gyrus in the superior frontal sulcus in the coronal plane just anterior to the temporal tip.

(ii) Temporal BA21
The superior sulcal margin (superior temporal sulcus) of the middle temporal gyrus in the coronal plane of the mammillary body.

(iii) Parietal BA40
The superior sulcal margin (intraparietal sulcus) of the parietal lobule in the plane 1 cm posterior to the posterior pole of the splenium.

Limbic or paralimbic regions

(i) Anterior cingulate BA24
In the plane of the anterior commissure approximately 2 cm posterior to the anterior pole of the genu.

(ii) Transentorhinal BA29
The sulcal margin (collateral sulcus) of the parahippocampal gyrus in the plane of the red nucleus.

Amygdala and parahippocampal region

Brain stem regions
Substantia nigra, locus ceruleus and dorsal nucleus of vagus.
Paraffin-embedded sections are cut at a thickness of 6-8 µm and stained with:
- hematoxylin and eosin
- anti-a-synuclein antibody (assess Lewy body pathology)
- anti-Aβ peptide antibody (assess AD plaque pathology)
- anti-phosphotau antibody (assess AD tau pathology).

Histologic assessment of Lewy body pathology

A formal assessment for AD should be performed, as described in the NIA-AA scheme (p.625). In each of the designated cortical areas, the density of Lewy bodies should be scored within the full thickness of the cerebral cortex according to comparison with standard images.

The areas are delimited as follows:
- Neocortical regions — from base to crest along the indicated sulcus of the selected gyrus
- Cingulate — along the full length of the gyrus in the indicated coronal plane of section
- Transentorhinal region — along the collateral sulcus from base to crest of the parahippocampal gyrus.

Scoring of density of cortical Lewy bodies

A semi-quantitative grading is made of severity of Lewy-related pathology into mild, moderate, severe and very severe (left to right below).
28.3 α-Synuclein pathology in Parkinson’s disease

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Frequency</th>
<th>Age of onset</th>
<th>Rate of progression</th>
<th>Motor Impairment</th>
<th>Axial Impairment</th>
<th>Cognitive Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postural instability and gait PD</td>
<td>15–25%</td>
<td>60</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tremor dominant PD</td>
<td>15–25%</td>
<td>60</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Early onset PD</td>
<td>25–30%</td>
<td>50</td>
<td>Slow</td>
<td>Mild</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Late onset PD</td>
<td>26%</td>
<td>67</td>
<td>Rapid</td>
<td>Severe</td>
<td>Yes</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Age: 50 60 70 80 years
7. References

7.1 NIAA guidelines for AD Staging 2012
Featured Articles

National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease

Bradley T. Hymana, Creighton H. Phelpsb, Thomas G. Beachc, Eileen H. Bigiod, Nigel J. Cairnse, f, Maria C. Carrillog, Dennis W. Dicksonh, Charles Duyckaertsi, Matthew P. Froschj, Eliezer Masliahk, l, Suzanne S. Mirram, Peter T. Nelsonn, Julie A. Schneidero, p, q, Dietmar Rudolf Thalr, Bill Thiese, John Q. Trojanowskit, Harry V. Vinterst, u, Thomas J. Montinev, x*

aDepartment of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
bNational Institute on Aging, Bethesda, MD, USA
cCivin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
dDepartment of Pathology, Northwestern Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
eDepartment of Neurology, Washington University School of Medicine, St. Louis, MO, USA
fDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
gAlzheimer's Association, Chicago, IL, USA
hDepartment of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
iService de Neuropathologie Raymond Escourbière, Hôpital de la Salpêtrière, Paris, France
jC.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
kDepartment of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA
lDepartment of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
mDepartment of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
nSanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
oRush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
pDepartment of Pathology, Rush University Medical Center, Chicago, IL, USA
qDepartment of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
rInstitute of Pathology–Laboratory of Neuropathology, University of Ulm, Ulm, Germany
sDepartment of Pathology and Laboratory Medicine, Institute of Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
tDepartment of Pathology and Laboratory Medicine (Neuropathology), University of California Los Angeles, Los Angeles, CA
uDepartment of Neurology, University of California Los Angeles, Los Angeles, CA
vDepartment of Pathology, University of Washington School of Medicine, Seattle, WA

Abstract

A consensus panel from the United States and Europe was convened recently to update and revise the 1997 consensus guidelines for the neuropathologic evaluation of Alzheimer’s disease (AD) and other diseases of brain that are common in the elderly. The new guidelines recognize the pre-clinical stage of AD, enhance the assessment of AD to include amyloid accumulation as well as neurofibrillary change and neuritic plaques, establish protocols for the neuropathologic assessment of Lewy body disease, vascular brain injury, hippocampal sclerosis, and TDP-43 inclusions, and recommend standard approaches for the workup of cases and their clinicopathologic correlation.

© 2012 The Alzheimer’s Association. All rights reserved.

Keywords: Alzheimer’s disease; Lewy body disease; Vascular brain injury; Neuropathology; Consensus guidelines

*Corresponding author. Tel.: 206-543-1140; Fax: 206-897-5249.
E-mail address: tmontine@uw.edu

1552-5260 – see front matter © 2012 The Alzheimer’s Association. All rights reserved.
doi:10.1016/j.jalz.2011.10.007
1. Introduction

The current consensus criteria for the neuropathologic diagnosis of Alzheimer's disease (AD), known as the National Institute on Aging (NIA)/Reagan Institute of the Alzheimer Association (AA) Consensus Recommendations for the Postmortem Diagnosis of AD or NIA–Reagan Criteria [1], were published in 1997 (hereafter referred to as “1997 Criteria”). Knowledge of AD and the tools used for clinical investigation of cognitive impairment and dementia have advanced substantially since then and have prompted this update on the neuropathologic assessment of AD.

2. Revised neuropathologic criteria for AD

The criteria proposed here for the neuropathologic assessment of AD differ from the 1997 Criteria in several respects.

The 1997 Criteria require a history of dementia, insofar as they were designed to help address the question of whether AD was the underlying cause of a patient’s dementia. From the clinical perspective, the concept of AD has evolved to include patients with milder symptoms [2], including the proposition that there is a preclinical phase of the illness [3]. Moreover, data have accumulated demonstrating that some older individuals who were cognitively intact proximate to death had significant AD neuropathologic change [4–17]. Indeed, substantial evidence exists to indicate that the pathophysiologic processes of AD are present in the brain well in advance of subjective or objective deficits [3]. There is consensus to disentangle the clinicopathologic term “Alzheimer’s disease” from AD neuropathologic change. The former refers to clinical signs and symptoms of cognitive and behavioral changes that are typical for patients who have substantial AD neuropathologic change, and is the focus of recent NIA–AA-sponsored consensus reports on three defined stages in a clinical continuum that includes preclinical [3], mild cognitive impairment [2], and dementia [18]. The latter refers to the presence and extent of neuropathologic changes of AD observed at autopsy, regardless of the clinical setting.

The criteria proposed here provide guidance on clinicopathologic correlations to pathologists reporting autopsy findings, based on the literature and analysis of the National Alzheimer’s Coordinating Center (NACC) database. They emphasize the importance of assessing non-AD brain lesions in recognition of commonly comorbid conditions in cognitively impaired elderly individuals. Indeed, pathologic findings for all potentially contributing diseases need to be recorded and then integrated with clinical findings in the neuropathologic assessment for each individual.

3. AD neuropathologic change

There are several characteristic lesions of AD, of which neurofibrillary tangles (NFTs) and senile plaques are considered essential for the neuropathologic diagnosis of AD (Box 1). NFTs are, at least initially, intraneuronal fibrils primarily composed of abnormal tau. NFTs can be visualized with a variety of histochemical stains or with immunohistochemistry directed against tau or phospho-tau epitopes. NFTs commonly are observed in limbic regions early in the disease but, depending on disease stage, also involve other brain regions, including association cortex, some subcortical nuclei, and even some brainstem regions [28], where their formation may precede that in limbic structures [29]. The 1997 Criteria used a staging scheme for NFTs described by Braak and Braak [20], which proposes six stages that can be reduced to four with improved inter-rater reliability [30]: no NFTs; Braak stages I/II, with NFTs predominantly in entorhinal cortex and closely related areas; stages III/IV, with NFTs more abundant in hippocampus and amygdala while extending slightly into association cortex; and stages V/VI, with NFTs widely distributed throughout the neocortex (“Neocortex” refers to the evolutionarily most recent portion of the cerebral cortex that is characterized by nerve cells arranged in six layers; it is synonymous with “isocortex” and “neopallium”) and ultimately involving primary motor and sensory areas. Neuritop threads and dystrophic neurites, lesions often associated with NFTs, likely represent dendrites and axons of NFT-containing soma that can be used to further elaborate disease [31].

Senile plaques, the other major component of AD neuropathologic change, are extracellular deposits of the Aβ peptides, but their nomenclature and morphologic features are complex. Aβ deposits can be at the center of a cluster of dystrophic neurites that frequently, but not always, have phospho-tau immunoreactivity; these form a subset of senile plaques called neuritic plaques. Aβ deposits are morphologically diverse and also include non-neuritic structures called diffuse plaques, cotton wool plaques, amyloid lakes, and subpial bands. The situation is further complicated because different types of plaques tend to develop in different brain regions [22], and although all genetic causes of AD result in Aβ deposits, they do not invariably result in extensive neuritic plaques [32]. Further, Aβ peptides are diverse proteins with heterogeneous lengths, amino- and carboxyl-terminals, posttranslational modifications, and assembly states that span from small oligomers and protofibrils to fibrils with the physicochemical properties of amyloid [33].

Among these different forms of Aβ plaques, neuritic plaques have been considered to be most closely associated with neuronal injury. Indeed, neuritic plaques are characterized by the occurrence of dystrophic neurites, greater local synapse loss, and glial activation [34–37]. The 1997 Criteria adopted a previously developed Consortium to Establish a Registry for Alzheimer’s disease (CERAD) neuritic plaque scoring system, which ranks the density of neuritic plaques identified histochemically in several regions of neocortex [21]. Several alternative protocols for assessing plaque accumulation have been proposed, including a hybrid that uses CERAD scoring of Aβ deposits...
Box 1: AD neuropathologic change

Method

Recommended brain regions for tiered evaluation are presented in Table 1. Preferred method for β-amyloid (Aβ) plaques is immunohistochemistry for Aβ, and for NFTs is immunohistochemistry for tau or phospho-tau [19] (other acceptable methods are thioflavin S or sensitive silver histochemical stains [20]). Preferred method for neuritic plaques is thioflavin S or modified Bielschowsky, as recommended by the CERAD protocol [21]. It is essential to score as neuritic only those plaques that exhibit dystrophic neurites; diffuse plaques should not be included. Note that immunohistochemistry probes for neuritic processes within senile plaques, such as amyloid precursor protein, ubiquitin, neurofilament, or phospho-tau, will identify specific, and partially overlapping, subtypes of dystrophic neurites that may differ in disease relevance [22].

Classification

AD neuropathologic change should be ranked along three parameters (Amyloid, Braak, CERAD) to obtain an “ABC score”:

A. Aβ plaque score (modified from Thal et al [23]):
 - A0: no Aβ or amyloid plaques
 - A1: Thal phase 1 or 2
 - A2: Thal phase 3
 - A3: Thal phase 4 or 5

B. NFT stage (modified from Braak for silver-based histochemistry [20] or phospho-tau immunohistochemistry [19]):
 - B0: no NFTs
 - B1: Braak stage I or II + entorhinal cortex
 - B2: Braak stage III or IV + hippocampus + slightly, occip.
 - B3: Braak stage V or VI + widely distributed in neocortex + mild involvement in Entorhinal, Hipp.

C. Neuritic plaque score (modified from CERAD [21]):
 - C0: no neuritic plaques
 - C1: CERAD score sparse
 - C2: CERAD score moderate
 - C3: CERAD score frequent

Notes: An alternative method that assesses progressive accumulation of Aβ deposits in medial temporal lobe structures only [24] is highly correlated with Thal phases [23]; we recommend the Thal phases to more directly link with neuroimaging studies. Although cerebral amyloid angiopathy (CAA), as well as capillary CAA, are not considered in these rankings, they should be reported (e.g., the Vosatetz et al, staging system for CAA [25]) and association with inheritance of the e4 allele of apolipoprotein E recognized [26].

Reporting

For all cases, regardless of clinical history, reporting should follow the format of these examples:

“Alzheimer Disease Neuropathologic Changes: A1, B0, C0” or
“Alzheimer Disease Neuropathologic Changes: A3, B3, C3”

Using the system shown in Table 2, the ABC scores are transformed into one of four levels of AD neuropathologic change: not, low, intermediate or high.

Notes: It is important to recognize that pathologic evaluation can be applied to specimens from surgery as well as autopsy; however, regional evaluation will be limited in biopsy specimens. Nevertheless, involvement of the neocortex by NFTs indicates B3, whereas involvement of cerebral cortex by Aβ deposits indicates A1 or possibly a higher score. In these circumstances, the neuritic plaque score may be especially important.

Clinicopathologic correlations

For individuals without cognitive impairment at the time tissue was obtained, it is possible that AD neuropathologic change may predate onset of symptoms by years [3].

For individuals with cognitive impairment at the time tissue was obtained, “Intermediate” or “High” level (Table 2) of AD neuropathologic change should be considered adequate explanation of cognitive impairment or dementia. When “Low” level of AD neuropathologic change is observed in the setting of cognitive impairment, it is likely that other diseases are present. In all cases with cognitive impairment, regardless of the extent of AD neuropathologic change, it is essential to determine the presence or absence, as well as extent, of other disease(s) that might have contributed to the clinical deficits.

For cases with incomplete clinical history, large clinicopathologic studies indicate that higher levels of AD neuropathologic change typically are correlated with greater likelihood of cognitive impairment. The NACC experience is outlined in Table 3. These data may help guide interpretation of results from autopsies with insufficient clinical history.

identified by immunohistochemistry [38] and those reported by Thal et al, who propose categorization based on progressive Aβ deposition in medial temporal lobe structures [24] or on phases of Aβ distribution across multiple areas of brain [23]. Although the outcomes of these different approaches are—at least in some cases—highly correlated, which single protocol or combination of protocols optimally represents this facet of AD neuropathologic change is not clear.
Other features of AD neuropathologic change are less straightforward to assess by conventional histopathologic methods or are considered less closely related to upstream causes of neural system damage than NFTs and plaques. These include synapse loss, neuron loss, atrophy, gliosis, degenerative changes in white matter, granulovacular degeneration, CAA, and other protein aggregates, such as TAR DNA-binding protein (TDP-43)-immunoreactive inclusions, Lewy bodies (LBs), and actin-immunoreactive Hirano bodies. The timing of any of these pathologic changes relative to functional changes is difficult to assess with certainty in autopsy samples. In addition, soluble forms of both Aβ and tau have been implicated in AD pathogenesis, but would not be apparent by conventional morphologic techniques [33]. It is important to recognize that the recommended use of NFTs, parenchymal Aβ deposits, and neuritic plaques as the defining histopathologic lesions of AD neuropathologic change according to the criteria proposed here does not preclude the possibility that other processes or lesions may be critical contributors to the pathophysiology of AD.

NFTs and neuritic plaques do, however, correlate with the presence of the clinical symptoms of AD. For example, NACC has collected data on individuals who came to autopsy and who had been clinically evaluated in a standardized manner in one of the approximately 30 AD centers located throughout the United States. Although there are limitations to these data, including the potential biases introduced by varied cohort selection criteria and the fact that they did not come from a population-based sample, the collected data nonetheless represent one of the largest clinicopathologic correlations yet assembled. By end of 2010, data from more than 1200 autopsies had been collected using the Uniform Data Set that has been in place since 2005. We analyzed these data to provide pathologists with a general guide to the clinical correlations of various levels of AD neuropathologic change.

The sample was narrowed by several criteria: subjects were excluded if the primary neuropathologic diagnosis was a dementia other than AD, if they had not had a formal clinical evaluation within 2 years of death (mean duration between clinical evaluation and death = 288 days), or if there was a medical condition thought to be a major contributor to cognitive or behavioral impairments. The remaining 562 individuals were then analyzed in terms of Braak NFT stage, CERAD neuritic plaque score, and the Clinical Dementia Rating Scale (CDR) [39] sum of boxes score (Table 3). The CDR sum of boxes score is the sum of scores of clinical impression of symptom severity in each of six domains of behavioral and cognitive function; each domain is scored from 0 (normal) to 3 (marked impairments). Of these 562 individuals, 95 were reported as being cognitively normal (CDR sum of boxes score = 0), 52 had very mild symptoms of cognitive impairment (CDR sum of boxes score = 0.5 to 3.0), and 415 had dementia. Of the patients with dementia, 63 had mild dementia (CDR sum of boxes score = 3.5–6.0), 108 had moderate dementia (CDR sum of boxes score = 6.5–12), and 244 had severe dementia (CDR sum of boxes score = >12). Although the number of individuals in some cells is relatively modest, the overall pattern supports the 1997 Criteria. For individuals with Braak NFT stage V or VI and frequent CERAD neuritic plaque score, 91% had moderate or severe dementia. Similarly, there was an intermediate probability of cognitive impairment in individuals with an intermediate level of AD neuropathologic change. For example, just more than half the individuals with Braak NFT stage III or IV and intermediate CERAD neuritic plaque score had a diagnosis of at least mild dementia. Finally, although most individuals who were cognitively normal were clustered as those with no or low levels of AD neuropathologic change, in rare cases, individuals appeared to be able to withstand at least some AD neuropathologic change and remain cognitively intact. Similarly, individuals who had very little AD neuropathologic change and no other detected lesions were generally normal clinically, but an occasional patient was reported with dementia, despite no obvious neuropathologic explanation.

4. Other diseases that commonly coexist with AD neuropathologic change

Although AD is the most common cause of dementia and can exist in a "pure" form, it commonly coexists with pathologic changes of other diseases that can also contribute to cognitive impairment [40]. The most common comorbidities are Lewy body disease (LBD), vascular brain injury (VBI), and hippocampal sclerosis (HS), as well as other neuropathologic changes, such as argyrophilic grain disease and TDP-43 inclusions, although they also may occur in a "pure" form without coexisting AD neuropathologic change or as neuropathologic features in other diseases. For a given amount of AD neuropathologic change, cognitive symptoms tend to be worse in the presence of comorbidities such as LBD or VBI [41]. However, it is difficult to judge the extent to which each disease process observed at autopsy may have contributed to a given patient’s cognitive state. Nevertheless, it is critical to document the type and extent of comorbidity in brains of individuals with AD neuropathologic change.

4.1. Lewy body disease

LBD is a subset of diseases, including Parkinson disease and dementia with Lewy bodies (DLB), that share the feature of abnormal accumulation of α-synuclein in certain brain regions (Box 2). Indeed, LBs are immunoreactive for α-synuclein, and immunohistochemistry is used to identify them. LBD includes not only LBs but also α-synuclein-immunoreactive neurites (so-called “Lewy neurites”) and diffuse cytoplasmic immunoreactivity; these features can be diagnostically useful even in the absence of classical LBs.
Table 1

Minimum recommended brain regions to be sampled and evaluated

<table>
<thead>
<tr>
<th>Region</th>
<th>AD (Stain for Aβ/amyloid plaques*)</th>
<th>B (Stain for NFTs)</th>
<th>C (Stain for NPs)</th>
<th>LBD (Stain for LBs)</th>
<th>MVLs and HS (Stain for H&E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medulla including DMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Pons including LC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Midbrain including SN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Cerebellar cortex and dentate nucleus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Thalamus and subthalamic nucleus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Basal ganglia at level of AC with basal nucleus of Meynert</td>
<td>2°: if 1° is +</td>
<td>Consider</td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Hippocampus and EC</td>
<td></td>
<td>Yes</td>
<td>Consider</td>
<td>2°: IHC in at least one if 1° is +</td>
<td>MVL</td>
</tr>
<tr>
<td>Cingulate, anterior</td>
<td></td>
<td>Yes</td>
<td></td>
<td>1°: IHC</td>
<td>MVL</td>
</tr>
<tr>
<td>Amygdala</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Middle frontal gyrus</td>
<td>1°+</td>
<td>Yes</td>
<td>Yes</td>
<td>2°: IHC in at least one if 1° is +</td>
<td>MVL</td>
</tr>
<tr>
<td>Superior and middle temporal gyrus</td>
<td>1°+</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Inferior parietal lobule</td>
<td>1°+</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>MVL</td>
</tr>
<tr>
<td>Occipital cortex (BA 17 and 18)</td>
<td></td>
<td>Consider</td>
<td>Consider</td>
<td>2°: IHC in at least one if 1° is +</td>
<td>MVL</td>
</tr>
<tr>
<td>WM at ACA, MCA, and PCA watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consider</td>
</tr>
</tbody>
</table>

Abbreviations: AD, Alzheimer’s disease; LBD, Lewy body disease; MVL, microvascular lesion; HS, hippocampal sclerosis; H&E, hematoxylin and eosin stain; IHC, immunohistochemistry; DMV, dorsal motor nucleus of the vagus; LC, locus ceruleus; SN, substantia nigra; AC, anterior commissure; EC, entorhinal cortex; WM, white matter; NFTs, neurofibrillary tangles; NP, neuritic plaques; LBs, Lewy bodies; ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; BA, Brodmann area.

NOTE: Each brain region should receive an H&E stain. In addition, regions are recommended for additional stains to reveal AD neuropathologic change and LBD. A tiered approach to assessment of Aβ/amyloid plaques and LBD is recommended to reflect their typically ordered appearance in brain. Although NFTs also typically follow an ordered appearance, we recommend wider screening to assist in capturing other tauopathies. H&E-stained sections for screening in the evaluation for MVLs and HS are designated. MVLs can occur in any region of brain and these should be reported; however, MVLs only within these screening sections are recommended for estimating possible contribution to cognitive impairment. Other lesions should be sampled as appropriate.

*Stains for Aβ/amyloid plaques should be considered in other regions not needed for classification, such as in the precuneus or cingulate, as neuroimaging studies indicate that these sites are among the earliest to demonstrate retention of amyloid-binding molecules, a marker of fibrillar Aβ accumulation.

Screen for LBs with immunohistochemistry or H&E in brainstem and with immunohistochemistry in amygdala. If positive, then expand immunohistochemistry for LBs in brainstem, limbic, and neocortical regions.

Consider taking bilateral sections if both cerebral hemispheres are available.

Screen leptomeningeal and parenchymal vessels for cerebral amyloid angiopathy.

LBs are frequent in the setting of moderate-to-severe levels of AD neuropathologic change [52,55], including some early-onset familial AD cases with APP or PSEN-1 mutations [56,57]. Not all cases with LBs or related changes have AD neuropathologic change; however, there appears to be a relationship between AD neuropathologic change and LBD, as in most series, subjects with dementia who have the most neocortical LBs also have concomitant AD neuropathologic change [58].

In the clinical setting of cognitive impairment, pure LBD with no or low level of AD neuropathologic change is relatively rare and most often seen in younger individuals. LBD is also characteristic of patients with Parkinson disease, with or without cognitive impairment or dementia, and may also be observed in some older individuals without clinical history of motor or cognitive deficits; these cases may represent preclinical disease [59].

Following the previously published consensus paper on DLB [45], we recommend that LBD be classified as no LBs, brainstem predominant, limbic (transitional), neocortical (diffuse), or amygdala predominant, understanding that in the clinical context of cognitive impairment and dementia, LBD may not follow the proposed rostrocaudal progression of accumulation, as reported in the setting of Parkinson disease [60]. Although the olfactory bulb is involved early in LBD [61,62], and there is clear value to evaluating at least one olfactory bulb when available in the workup of LBD, the consensus of the panel was to not require its sampling in the proposed classification scheme for practical reasons.

4.2. Cerebrovascular disease and VBI

Cerebrovascular disease (CVD) and VBI, which describes parenchymal damage from CVD as well as systemic dysfunction such as prolonged hypotension or hypoxia [63], increase exponentially with age beyond the seventh decade of life, similar to AD (Box 3). Not surprisingly, evidence of CVD and VBI is commonly encountered in the brains of those who die with AD neuropathologic change [63,68,69]. The current ability to estimate the relative contributions of AD or VBI to cognitive impairment in a given individual is limited [70–73].
Table 2

<table>
<thead>
<tr>
<th>A: Aβ/amyloid plaque score (Thal phases)*</th>
<th>C: Neuritic plaque score (CERAD)**</th>
<th>B: NFT score (Braak stage)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (0)</td>
<td>C0 (none)</td>
<td>No°</td>
</tr>
<tr>
<td>A1 (1/2)</td>
<td>C0 or C1 (none to sparse)</td>
<td>Low</td>
</tr>
<tr>
<td>A2 (3)</td>
<td>C2 or C3 (mod. to freq.)**</td>
<td>Low</td>
</tr>
<tr>
<td>A3 (4/5)</td>
<td>Any C</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>C0 or C1 (none to sparse)</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>C2 or C3 (mod. to freq.)**</td>
<td>Low</td>
</tr>
</tbody>
</table>

Abbreviations: CERAD, Consortium to Establish a Registry for Alzheimer's disease; mod., moderate; freq., frequent.

NOTE. AD neuropathologic change is evaluated using an "ABC" score that derives from three separate 4-point scales: Aβ/amyloid plaques (A) by the method of Thal phases, NFT stage by the method of Braak (B), and neuritic plaque score by the method of CERAD (C). The combination of A, B, and C scores receives a descriptor of “Not,” “Low,” “Intermediate,” or “High” AD neuropathologic changes. “Intermediate” or “High” AD neuropathologic change is considered sufficient explanation for dementia.

*Aβ/amyloid plaque score should be determined by the method of Thal et al [23].

*Neuritic plaque score should be determined by the method of CERAD [21].

*NFT stage should be determined by the method of Braak [19,20].

*Medial temporal lobe NFTs in the absence of significant Aβ or neuritic plaques occur in older people and may be seen in individuals without cognitive impairment, with mild impairment, or with cognitive impairment from causes other than AD [27]. Consider other diseases when clinically or pathologically indicated.

*Widespread NFTs with some Aβ/amyloid plaques or limited neuritic plaques are relatively infrequent, and when they occur, other diseases, particularly taurploicopathies, should be considered. Such cases may not fit easily into a specific Braak stage, which is intended for categorization of AD-type NFTs.

**Presence of high levels of neuritic plaques in setting of low Thal phase is a rare occurrence and should prompt reconsideration of neuritic versus diffuse plaques, and the possible contribution of other diseases to cognitive impairment or dementia.

3Higher levels of Aβ or neuritic plaques with low Braak stage should prompt consideration of contribution by comorbidities such as vascular brain injury, LBD, or HS. Also, consider additional sections as well as repeat or additional protocols to demonstrate other non-AD lesions.

The major types of CVD that cause VBI are atherosclerosis, arteriosclerosis (synonymous with small-vessel disease or lipohyalinosis), and CAA [74–78]. The presence of CAA, in particular, further interweaves AD and VBI, as Aβ-positive CAA often occurs together with the other neuropathologic changes of AD [79,80]. There are many less common forms of CVD, including various forms of vasculitis, CAA from non-Aβ amyloidosis, and inherited diseases that affect vessel integrity, some of which are associated with the development of cognitive impairment in the absence of AD (e.g., cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, also known as CADASIL).

VBI usually is characterized as infarcts or hemorrhages. Infarcts often are classified by size: territorial infarcts (larger than 1 cm in greatest dimension) in the region supplied by a large basal artery or one of its branches, lacunar infarcts (smaller than 1 cm in greatest dimension but grossly visible), and microinfarcts (not grossly visible but seen only on microscopic sections) [74,77,81]. The latter appear to have various etiologies, including emboli, small-vessel disease, and CAA [82]. Other forms of ischemic injury, such as diffuse white matter injury, also occur; however, these are more difficult to judge objectively than infarcts. Moreover, white matter injury also may represent secondary degeneration after primary gray matter damage and Wallerian degeneration. Hemorrhages in the brain also are usually classified as grossly visible hemorrhages or microhemorrhages, both of which are strongly associated with CAA and arteriosclerosis. It may be difficult to distinguish some microinfarcts from remote microhemorrhages, and for this reason, these lesions have been grouped together as microvascular lesions (MVLs).

4.3 HS and TDP-43 inclusions

HS is defined by pyramidal cell loss and gliosis in CA1 and subiculum of the hippocampal formation that is out of proportion to AD neuropathologic change in the same structures [83]. HS can be observed in the context of AD neuropathologic change, frontotemporal lobar degeneration (FTLD, vide infra), and VBI (Box 4), likely reflecting a heterogeneous etiology. Large autopsy series have correlated HS with impaired cognition, although this relationship is complex [41,84].

TDP-43 proteinopathy is observed in approximately one-half of cases with FTLD and ubiquitin inclusions with or without motor neuron disease, in most sporadic cases of amyotrophic lateral sclerosis, and in some familial cases of amyotrophic lateral sclerosis. TDP-43–immunoreactive inclusions are present in the majority of cases of HS [85–87]; however, HS in the context of VBI or epilepsy may lack aberrant TDP-43 inclusions [84,88]. TDP-43–immunoreactive inclusions also are observed in a fraction of cases with AD neuropathologic change [86,89] or with LBD [90], among other neurodegenerative diseases. It is not clear whether changes in TDP-43 in these neurodegenerative diseases is a primary, secondary, or coincidental event [91].
5. Other diseases in the differential diagnosis of dementia

AD neuropathologic change should be assessed in all cases of dementia. There are many other neurodegenerative disorders that can cause dementia in addition to those discussed so far, and any of these may be comorbid with AD neuropathologic change, especially in the elderly population. Although providing specific protocols for the diagnosis of all possible comorbidities is beyond the scope of this article, it is worth mentioning two important examples: “taupathies” and prion disease.

The neuropathologic evaluation of FTLD and its subtypes was the subject of another recent consensus conference. For FTLD-TDP (for “TDP-43”) and FTLD-FUS (for “fused in sarcoma”), immunohistochemistry for ubiquitin, α-interneuron, TDP-43, and FUS can be of assistance [92–94]. For the group of diseases included under the term FTLD-tau, a careful determination of the morphologic changes and distribution of the abnormal tau and neuron loss is important in narrowing the differential diagnosis. Immunohistochemistry for 3-repeat and 4-repeat tau may be useful in some cases, while biochemical characterization of tau abnormalities (e.g., Western blot) remains a research adjunct to neuropathologic diagnosis [92–94]. For some tauopathies, such as tangle-predominant senile dementia, chronic traumatic encephalopathy, or diffuse NFTs with calcification, the distribution and density of tangles and the paucity of neocortical plaques must be carefully documented, as tangle-predominant senile dementia, chronic traumatic encephalopathy, and diffuse NFTs with calcification, like AD-type NFTs, also contain both 3-repeat and 4-repeat tau [92–97]. At this point, making the diagnosis of either concomitant FTLD-UPS (for “ubiquitin proteasome system”) or FTLD-ni (for “no inclusions”), also known as dementia lacking distinctive histopathology) in cases with AD may not be possible.

A note of caution is warranted concerning Braak NFT staging in non-AD tauopathies, as neuronal lesions in some of these diseases may be undetectable by common histochemical staining methods useful for AD neuropathologic change [98]. Indeed, some cases of FTLD-tau may be Braak NFT stage “None,” despite widespread abnormal tau in the neocortex or hippocampus detected by immunohistochemistry or biochemical methods.

Finally, not only can the neuropathologic changes of prion disease be comorbid with AD, but also some forms of prion disease can present neuropathologic changes that overlap with AD and need to be distinguished with special stains [99].

6. Recommendation on biomarkers

We recommend that genetic risk and biomarkers (chemical and neuroimaging) be used in research settings to complement neuropathologic data for the postmortem diagnosis.
Box 2: LBD (includes Parkinson disease and DLB)

Method

Recommended brain regions for detailed evaluation are in Table 1. Immunohistochemistry for α-synuclein is strongly preferred [42-44]. LBs may be detected in neurons of medulla, pons, and midbrain with hematoxylin and eosin (H&E)-stained sections; however, greater sensitivity can be achieved with immunohistochemistry. Abnormal neuronal and neuronal cytoplasmic α-synuclein immunoreactivity are usually present with LBs but will not be apparent by H&E, and in some instances, these changes occur in the absence of LBs.

Classification

Classification of LBD is modified from McKeith et al [45]:

- None: No LBs or related changes in α-synuclein immunohistochemistry
- Brainstem predominant: LBs in medulla, pons, or midbrain
- Limbic (transitional): LBs in cingulate or entorhinal cortices, usually with brainstem involvement
- Neocortical (diffuse): LBs in frontal, temporal, or parietal cortices, usually with involvement of brainstem and limbic sites, which may include amygdala
- Amygdala predominant: LBs in amygdala with paucity of LBs in the above regions

Reporting

For all cases, regardless of clinical history, reporting should follow the format of these examples:

- "Lewy Body Disease, Limbic" or
- "Lewy Body Disease, Amygdala-predominant"

Note: This LBD classification can be applied to specimens from surgery, as well as autopsy, with the same limitations discussed for AD neuropathologic change.

Clinicopathologic correlations

For individuals without cognitive impairment at the time tissue was obtained, we stress that, although much less common than AD, large autopsy series have observed LBD in individuals without apparent cognitive or motor deficit [46,47]. This may represent preclinical LBD [48-51]; however, proof awaits methods of in vivo testing and longitudinal studies.

For individuals with cognitive impairment at the time tissue was obtained, we recommend that neocortical LBs be considered adequate explanation of cognitive impairment or dementia; this does not preclude contribution from other diseases. Brainstem-predominant LBs in the setting of cognitive impairment should stimulate consideration of other pathologic processes. Amygdala-predominant LBs typically occur in the context of advanced AD neuropathologic change [52].

For cases with incomplete clinical history, we note that large clinicopathologic studies indicate that neocortical LBs are correlated with greater likelihood of cognitive impairment [53,54].

of AD. We emphasize, however, that no single finding or combination of findings from these modalities currently is known to define better the disease state than neuropathologic examination. We recognize that this is a rapidly advancing field of investigation and that in the future some combination of genetic testing and biomarkers may be useful as a surrogate for neuropathologic changes or functional decline.

7. Comments and areas for further research

There is broad agreement in numerous clinicopathologic studies that the extent of NFT accumulation correlates with severity of dementia, whereas the amount of senile plaque accumulation is less closely tied to the degree of cognitive impairment [100], perhaps in part due to the heterogeneity of senile plaques, the range of methods for their detection, and the varying schemes for their classification. In agreement with the 1997 Criteria, any AD neuropathologic change is viewed as evidence of disease and is considered abnormal. Nonetheless, there are multiple aspects of the neuropathologic evaluation of AD, and of the relationship between neuropathologic and cognitive changes, which may require refinement both methodologically and conceptually. We highlight here issues that would benefit from additional study, recognizing that each "consensus" conference not only addresses issues but also raises new questions.

A major point of discussion among committee members was the relative value of evaluating both Aβ/amyloid plaque phase and neuritic plaque score (Box 1) in the assessment of AD neuropathologic change. Because the relative independent value of these two parameters is not currently known, we suggest collecting data on both and evaluating their independent value in future analyses.

Both quantitative and qualitative aspects of AD neuropathologic change have significance, but current diagnostic methods are not robustly quantitative and/or not systematically qualitative. Evaluating the degree of Aβ and phospho-tau accumulation may rely on estimates of the
Box 3: CVD and VBI

Method

Macroscopic examination should evaluate large vessels for CVD, and the brain for infarcts and hemorrhages. Recommended screening sections for MVLs as potential contributors to cognitive impairment are listed in Table 1. MVLs may occur in any region of brain, but only MVLs in these standardized sections should be enumerated when considering contributors to cognitive impairment or dementia. Immunohistochemistry, such as for glial fibrillary acidic protein, may increase sensitivity for detection of MVLs [65]; however, this has not been rigorously demonstrated.

Classification

The extent of different types of CVD should be reported according to a standardized approach [64]. All infarcts and hemorrhages observed macroscopically should be documented and include location, size, and age. The location, age, and number of MVLs in standard screening sections should be recorded.

Reporting

Reporting should follow the format of these examples:

- Cerebrovascular disease:
 - Atherosclerosis, moderate, non-occlusive, affecting basilar artery, left internal carotid artery and middle cerebral artery
 - Atherosclerosis, severe, widespread involvement of hemispheric white matter

- Vascular brain injury:
 - Infarct in the territory of the left middle cerebral artery, remote, measuring 3 x 3 x 2 cm
 - Lacunar infarct, right anterior caudate, remote, measuring 0.5 x 0.3 x 0.2 cm
 - Microvascular lesions: 2 remote lesions detected on standard sections (right middle frontal gyrus and right inferior parietal lobule)

Note: Evaluation of CVD and VBI can be applied to specimens from surgery as well as autopsy.

Clinicopathologic correlations

Clinicopathologic correlations for grossly visible infaracts or hemorrhages should follow classic neuropathologic approaches. Clinical correlations for MVLs have been investigated in a few large cohorts. Although there are some differences in approach, guidelines have emerged: one MVL identified in standard sections of brain, like those proposed in Table 1, is of unclear relationship to cognitive function, whereas multiple MVLs are associated with increased likelihood of cognitive impairment or dementia [65–67].

burden of the lesions in a given region or on a qualitative assessment of their distribution throughout the brain. For example, the widely used Braak NFT staging protocol evaluates NFT distribution rather than density. Methods for assessing Aβ brain distribution and density are less standardized. For example, Thal phases of anatomical distribution of amyloid deposits [23], CERAD ranking of neuritic plaque density [21], and image analysis–based

Box 4: HS and TDP-43 inclusions

Method and classification

Recommended regions for evaluation are in Table 1. HS should be evaluated by H&E-stained sections together with NFT stains, as described in the text. HS can be focal; therefore, its absence in the recommended screening section does not rule out the possibility of HS elsewhere in the hippocampal formation.

If HS is present, further evaluation is indicated, including TDP-43 immunohistochemistry. If workup is negative for TDP-43 but associated with other evidence to suggest FTLD, consider immunohistochemistry for phospho-tau, ubiquitin, or TDP-43.

In the absence of HS, the value of screening for TDP-43 inclusions as part of the workup for evaluating AD neuropathologic change is unclear.

Reporting

HS should be reported as present or absent with a description of immunohistochemistry results.

Clinicopathologic correlations

Clinicopathologic correlations are complicated because HS can occur in several different diseases and may derive from multiple mechanisms. Indeed, HS observed in the setting of VBI, epilepsy, or FTLD has different clinical implications. Relatively isolated HS may occur in very old individuals, and in this context, it is associated with TDP-43-immunoreactive inclusions and with cognitive impairment [41,84].
evaluation of amyloid load are three methods in common use to estimate this facet of AD. Biochemical assays provide a fourth approach that has the advantage of also discriminating soluble forms and specific peptides. It was the opinion of this committee that it is not yet clear whether one of these methods is superior to any other. Indeed, this point engendered much discussion, highlighting the need for additional data. Important issues to address when comparing different methods that attempt to assess lesion burden include brain regions investigated, volume of tissue examined, differing sensitivity and specificity among tests, standardization across laboratories and groups of neuropathologists, and, ultimately, correlation with function.

The idea that Aβ deposition, abnormal tau accumulation, and neuritic plaques reflect the complete molecular pathology of AD is an oversimplification. Indeed, current data cannot exclude the possibility that these structures are by-products of an as-yet unknown mechanism. For example, oligomeric Aβ and nonfibrillar tau have been considered key players in the cascade of lesions. New ways of evaluating additional molecular species and of determining their relation to the clinical and neuropathologic data need to be developed. Moreover, neuropathologists should continue to pursue the study of the molecular nature of the microscopic changes by established methods and new approaches in both experimental animals and in human brain.

In addition to the autosomal dominant PSEN-1, PSEN-2, and APP gene mutations, or ε4 allele of apolipoprotein E, which clearly have a major impact on the accumulation of both plaques and CAA in AD, numerous other genetic variations and environmental risk factors have recently been described; the extent to which these impact the neuropathologic changes of AD remains largely unknown.

As new treatments are being evaluated, interpretation of neuropathologic assessments may need to be adapted to the changes that therapeutics may induce.

The three parameters of AD neuropathologic change need to be investigated in relationship to clinical outcomes and laboratory testing, including biofluid biomarkers and neuroimaging.

Current consensus pathologic criteria for DLB use the 1997 criteria for AD together with a method for assessing the severity and distribution of LBs and related neuropil changes, designating brainstem-predominant, limbic, and diffuse neocortical types. Refinements of these criteria have been proposed. The revisions in criteria proposed here for the neuropathologic assessment of AD need to be assessed with respect to their impact on DLB classification using established well-characterized cohorts.

Ischemic injury to gray and white matter is much more complex than formation of infarcts, hemorrhages, or MNLs; however, current pathologists' tools are limited in assessing this type of damage and need to be expanded.

8. Summary

The goals of the Consensus Committee were to update the 1997 Criteria and to broaden their application to include all individuals, rather than only patients with dementia as required by 1997 Criteria, thereby emphasizing the continuum of neuropathologic changes that underlie AD. The Committee's goals also included an emphasis on the common comorbid diseases in neuropathologic evaluation, a better-defined role of neuropathologic changes of AD in individuals with intermediate levels of pathologic changes, and consideration of the role of new genetic and biomarker data in the neuropathologic evaluation of AD changes. A consensus was reached that criteria should be data driven, focused primarily on neuropathologic rather than clinical criteria, and—to the extent possible—reflect current molecular understanding of disease mechanisms. The Committee recommends an “ABC” staging protocol for the neuropathologic changes of AD, based on three morphologic characteristics of the disease: Aβ/amyloid plaques (A), NFTs (B), and neuritic plaques (C). A change in nomenclature to facilitate reporting of AD neuropathologic changes in individuals without regard for cognitive status is recommended. Finally, several issues that require further investigation are highlighted to guide further clinicopathologic studies.

Acknowledgments

Support was provided by the NIH (AG05134, AG05136, AG03991, AG05681, AG24904, AG28383, AG10161, AG17917, AG10124, AG13854, AG19610, NS62684, AG16570, AG15819, AG12435, AG05131, AG016976, and AG18840) as well as the AA, Arizona Department of Health Services (contract 211002, Arizona Alzheimer's Consortium), Deutsche Forschungsgemeinschaft (DFG TH-624-4-1) and Alzheimer Forschung Initiative (AFI #10810), the Nancy and Buster Alvord Endowment, and the Charles and Joanne Knight Alzheimer Research Initiative. The authors extend their deepest thanks to Dr. Heiko Braak, Dr. Kelly Del Tredici, Dr. Nina Silverberg, Dr. Walter Kukull, Dr. Kathleen Montine, Dr. Cerise Elliott, and Ms. Sarah Monsell for their valuable input.

References

